Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293027

RESUMEN

Proteolytic activation of the hemagglutinin (HA) glycoprotein by host cellular proteases is pivotal for influenza A virus (IAV) infectivity. Highly pathogenic avian influenza viruses possess the multibasic cleavage site of the HA which is cleaved by ubiquitous proteases, such as furin; in contrast, the monobasic HA motif is recognized and activated by trypsin-like proteases, such as the transmembrane serine protease 2 (TMPRSS2). Here, we aimed to determine the effects of TMPRSS2 on the replication of pandemic H1N1 and H3N2 subtype IAVs in the natural host, the pig. The use of the CRISPR/Cas 9 system led to the establishment of homozygous gene edited (GE) TMPRSS2 knockout (KO) pigs. Delayed IAV replication was demonstrated in primary respiratory cells of KO pigs in vitro. IAV infection in vivo resulted in significant reduction of virus shedding in the upper respiratory tract, and lower virus titers and pathological lesions in the lower respiratory tract of TMPRSS2 KO pigs as compared to WT pigs. Our findings could support the commercial use of GE pigs to minimize (i) the economic losses caused by IAV infection in pigs, and (ii) the emergence of novel IAVs with pandemic potential through genetic reassortment in the "mixing vessel", the pig.

2.
PLoS One ; 18(11): e0291805, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37988399

RESUMEN

Small ruminants, especially sheep, are essential for sustainable agricultural production systems, future food/nutrition security, and poverty reduction in developing countries. Within developed countries, the ability of sheep to survive on low-quality forage intake could act as buffer against climate change. Besides sheep's importance in sustainable agricultural production, there has been less ongoing work in terms of sheep genetics in Near East, Middle East and in Africa. For lamb meat production, body weight and average daily gain (ADG) until weaning are critical economic traits that affects the profitability of the industry. The current study aims to identify single nucleotide polymorphisms (SNPs) that are significantly associated with pre-weaning growth traits in fat tail Akkaraman lambs using a genome-wide association study (GWAS). A total of 196 Akkaraman lambs were selected for analysis. After quality control, a total of 31,936 SNPs and 146 lambs were used for subsequent analyses. PLINK 1.9 beta software was used for the analyses. Based on Bonferroni-adjusted p-values, one SNP (rs427117280) on chromosome 2 (OAR2) had significant associations with weaning weight at day 90 and ADG from day 0 to day 90, which jointly explains a 0.8% and 0.9% of total genetic variation respectively. The Ovis aries natriuretic peptide C (NPPC) could be considered as a candidate gene for the defined significant associations. The results of the current study will help to increase understanding of the variation in weaning weight and ADG until weaning of Akkaraman lambs and help enhance selection for lambs with improved weaning weight and ADG. However, further investigations are required for the identification of causal variants within the identified genomic regions.


Asunto(s)
Estudio de Asociación del Genoma Completo , Ovinos , Animales , Peso Corporal/genética , Estudio de Asociación del Genoma Completo/veterinaria , Ovinos/genética , Destete
3.
Genes (Basel) ; 14(3)2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36980985

RESUMEN

The objective of this study was to uncover the genetic background of wool quality, a production trait, by estimating genomic heritability and implementing GWAS in Akkaraman sheep. The wool characteristics measured included fibre diameter (FD) and staple length (SL) at the age of 8 months and yearling fibre diameter (YFD), yearling staple length (YSL) and yearling greasy fleece weight (YGFW) at 18 months of age. Animals were genotyped using the Axiom 50 K Ovine Genotyping Array. Maximum likelihood estimations of a linear mixed model (LMM) were used to estimate genomic heritability, where GWAS was conducted following a score test of each trait. Genomic heritability estimates for the traits ranged between 0.22 and 0.63, indicating that phenotypes have a moderate range of heritability. One genome- and six chromosome-wide significant SNPs were associated with the wool traits in Akkaraman lambs. Accordingly, TRIM2, MND1, TLR2, RNF175, CEP290, TMTC3, RERE, SLC45A1, SOX2, MORN1, SKI, FAAP20, PRKCZ, GABRD, CFAP74, CALML6 and TMEM52 genes as well as nine uncharacterized regions (LOC101118971, LOC105609137, LOC105603067, LOC101122892, LOC106991694, LOC106991467, LOC106991455, LOC105616534 and LOC105609719) were defined as plausible candidates. The findings of this study shed light on the genetics of wool quality and yield for the Akkaraman breed and suggests targets for breeders during systematic breeding programmes.


Asunto(s)
Genoma , Lana , Ovinos , Animales , Fenotipo , Genotipo , Genoma/genética , Genómica
4.
Front Genet ; 14: 1297444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288162

RESUMEN

Ovine footrot is an infectious disease with important contributions from Dichelobacter nodosus and Fusobacterium necrophorum. Footrot is characterized by separation of the hoof from underlying tissue, and this causes severe lameness that negatively impacts animal wellbeing, growth, and profitability. Large economic losses result from lost production as well as treatment costs, and improved genetic tools to address footrot are a valuable long-term goal. Prior genetic studies had examined European wool sheep, but hair sheep breeds such as Katahdin and Blackbelly have been reported to have increased resistance to footrot, as well as to intestinal parasites. Thus, footrot condition scores were collected from 251 U.S. sheep including Katahdin, Blackbelly, and European-influenced crossbred sheep with direct and imputed genotypes at OvineHD array (>500,000 single nucleotide polymorphism) density. Genome-wide association was performed with a mixed model accounting for farm and principal components derived from animal genotypes, as well as a random term for the genomic relationship matrix. We identified three genome-wide significant associations, including SNPs in or near GBP6 and TCHH. We also identified 33 additional associated SNPs with genome-wide suggestive evidence, including a cluster of 6 SNPs in a peak near the genome-wide significance threshold located near the glutamine transporter gene SLC38A1. These findings suggest genetic susceptibility to footrot may be influenced by genes involved in divergent biological processes such as immune responses, nutrient availability, and hoof growth and integrity. This is the first genome-wide study to investigate susceptibility to footrot by including hair sheep and also the first study of any kind to identify multiple genome-wide significant associations with ovine footrot. These results provide a foundation for developing genetic tests for marker-assisted selection to improve resistance to ovine footrot once additional steps like fine mapping and validation are complete.

5.
Genes (Basel) ; 13(12)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36553445

RESUMEN

Genome-wide association studies (GWAS) have been used as an effective tool to understand the genetics of complex traits such as gastrointestinal parasite (GIP) resistance. The aim of this study was to understand the genetics of gastrointestinal parasite (nematodes, Moniezia spp., Eimeria spp.) resistance in Akkaraman sheep by performing genomic heritability estimations and conducting GWAS to uncover responsible genomic regions. This is one of the first studies to examine the genetic resistance of Akkaraman sheep to the tapeworm parasite. The samples from 475 animals were genotyped using the Axiom 50K Ovine Genotyping Array. Genomic heritability estimates ranged from 0.00 to 0.34 for parasite resistance traits. This indicates that measured phenotypes have low to moderate heritability estimates. A total of two genome-wide significant SNP associated with TNEM3 and ATRNL1 genes and 10 chromosome-wide significant SNPs related with 10 genes namely NELL1, ST6GALNAC3, HIPK1, SYT1, ALK, ZNF596, TMCO5A, PTH2R, LARGE1, and SCG2 were suggested as candidates for parasite resistance traits. The majority of these candidate genes were involved in several basic biological processes that are essential and important for immune system functions and cellular growth; specifically, inflammatory responses, cellular transport, cell apoptosis, cell differentiation, histone de-acetylation, and endocytosis. These results have implications for animal breeding program studies due to the effect that the genetic background has on parasite resistance, which underlies many productive, health, and wellness-related traits.


Asunto(s)
Nematodos , Parásitos , Ovinos/genética , Animales , Estudio de Asociación del Genoma Completo/veterinaria , Nematodos/fisiología , Genotipo , Genómica
6.
Sci Rep ; 12(1): 18477, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323871

RESUMEN

The aim of this study was to estimate genomic heritability and the impact that genetic backgrounds have on blood parameters in Akkaraman sheep by conducting genome-wide association studies and regional heritability mapping analysis. Genomic heritability estimates for blood parameters ranged from 0.00 to 0.55, indicating that measured phenotypes have a low to moderate heritability. A total of 7 genome- and 13 chromosome-wide significant SNPs were associated with phenotypic changes in 15 blood parameters tested. Accordingly, SCN7A, SCN9A, MYADM-like, CCDC67, ITGA9, MGAT5, SLC19A1, AMPH, NTRK2, MSRA, SLC35F3, SIRT6, CREB3L3, and NAV3 genes as well as three undefined regions (LOC101117887, LOC106991526 and LOC105608461) were suggested as candidates. Most of the identified genes were involved in basic biological processes that are essential to immune system function and cellular growth; specific functions include cellular transport, histone deacetylation, cell differentiation, erythropoiesis, and endocytosis. The top significant SNP for HCT, MCH, and MCHC was found within a genomic region mainly populated by the MYADM-like gene family. This region was previously suggested to be under historical selection pressure in many sheep breeds from various parts of the world. These results have implications on animal breeding program studies due to the effect that the genetic background has on blood parameters, which underlying many productive and wellness related traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Ovinos/genética , Animales , Estudio de Asociación del Genoma Completo/métodos , Genómica , Polimorfismo de Nucleótido Simple , Fenotipo
7.
Genes (Basel) ; 13(8)2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-36011330

RESUMEN

In the current study, the genetic architecture of growth and linear type traits were investigated in Akkaraman sheep. Estimations of genomic heritability, genetic correlations, and phenotypic correlations were implemented for 17 growth and linear type traits of 473 Akkaraman lambs by the univariate and multivariate analysis of animal mixed models. Correspondingly, moderate heritability estimates, as well as high and positive genetic/phenotypic correlations were found between growth and type traits. On the other hand, 2 genome-wide and 19 chromosome-wide significant single nucleotide polymorphisms were found to be associated with the traits as a result of animal mixed model-based genome-wide association analyses. Accordingly, we propose several genes located on different chromosomes (e.g., PRDM2, PTGDR, PTPRG, KCND2, ZNF260, CPE, GRID2, SCD5, SPIDR, ZNF407, HCN3, TMEM50A, FKBP1A, TLE4, SP1, SLC44A1, and MYOM3) as putative quantitative trait loci for the 22 growth and linear type traits studied. In our study, specific genes (e.g., TLE4, PTGDR, and SCD5) were found common between the traits studied, suggesting an interplay between the genetic backgrounds of these traits. The fact that four of the proposed genes (TLE4, MYOM3, SLC44A1, and TMEM50A) are located on sheep chromosome 2 confirms the importance of these genomic regions for growth and morphological structure in sheep. The results of our study are therefore of great importance for the development of efficient selection indices and marker-assisted selection programs, as well as for the understanding of the genetic architecture of growth and linear traits in sheep.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Animales , Estudio de Asociación del Genoma Completo/métodos , Genómica , Fenotipo , Polimorfismo de Nucleótido Simple , Ovinos/genética
8.
PLoS One ; 17(5): e0266748, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35522671

RESUMEN

Monocytes are a core component of the immune system that arise from bone marrow and differentiate into cells responsible for phagocytosis and antigen presentation. Their derivatives are often responsible for the initiation of the adaptive immune response. Monocytes and macrophages are central in both controlling and propagating infectious diseases such as infection by Coxiella burnetii and small ruminant lentivirus in sheep. Genotypes from 513 Rambouillet, Polypay, and Columbia sheep (Ovis aries) were generated using the Ovine SNP50 BeadChip. Of these sheep, 222 animals were subsequently genotyped with the Ovine Infinium® HD SNP BeadChip to increase SNP coverage. Data from the 222 HD genotyped sheep were combined with the data from an additional 258 unique sheep to form a 480-sheep reference panel; this panel was used to impute the low-density genotypes to the HD genotyping density. Then, a genome-wide association analysis was conducted to identify loci associated with absolute monocyte counts from blood. The analysis used a single-locus mixed linear model implementing EMMAX with age and ten principal components as fixed effects. Two genome-wide significant peaks (p < 5x10-7) were identified on chromosomes 9 and 1, and ten genome-wide suggestive peaks (p < 1x10-5) were identified on chromosomes 1, 2, 3, 4, 9, 10, 15, and 16. The identified loci were within or near genes including KCNK9, involved into cytokine production, LY6D, a member of a superfamily of genes, some of which subset monocyte lineages, and HMGN1, which encodes a chromatin regulator associated with myeloid cell differentiation. Further investigation of these loci is being conducted to understand their contributions to monocyte counts. Investigating the genetic basis of monocyte lineages and numbers may in turn provide information about pathogens of veterinary importance and elucidate fundamental immunology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Oveja Doméstica , Animales , Genoma , Estudio de Asociación del Genoma Completo/veterinaria , Genotipo , Monocitos , Polimorfismo de Nucleótido Simple , Ovinos/genética , Oveja Doméstica/genética
9.
Animals (Basel) ; 11(7)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206933

RESUMEN

Small ruminant lentivirus (SRLV) causes Maedi-Visna or Ovine Progressive Pneumonia in sheep and creates insidious livestock production losses. This retrovirus is closely related to human immunodeficiency virus and currently has no vaccines or cure. Genetic marker assisted selection for sheep disease resiliency presents an attractive management solution. Previously, we identified a region containing a cluster of zinc finger genes that had association with ovine SRLV proviral concentration. Trait-association analysis validated a small insertion/deletion variant near ZNF389 (rs397514112) in multiple sheep breeds. In the current study, 543 sheep from two distinct populations were genotyped at 34 additional variants for fine mapping of the regulatory elements within this locus. Variants were selected based on ChIP-seq annotation data from sheep alveolar macrophages that defined active cis-regulatory elements predicted to influence zinc finger gene expression. We present a haplotype block of variants within regulatory elements that have improved associations and larger effect sizes (up to 4.7-fold genotypic difference in proviral concentration) than the previously validated ZNF389 deletion marker. Hypotheses for the underlying causal mutation or mutations are presented based on changes to in silico transcription factor binding sites. These variants offer alternative markers for selective breeding and are targets for future functional mutation assays.

10.
PLoS One ; 16(7): e0247209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34252097

RESUMEN

Mycoplasma ovipneumoniae contributes to polymicrobial pneumonia in domestic sheep. Elucidation of host genetic influences of M. ovipneumoniae nasal detection has the potential to reduce the incidence of polymicrobial pneumonia in sheep through implementation of selective breeding strategies. Nasal mucosal secretions were collected from 647 sheep from a large US sheep flock. Ewes of three breeds (Polypay n = 222, Rambouillet n = 321, and Suffolk n = 104) ranging in age from one to seven years, were sampled at three different times in the production cycle (February, April, and September/October) over four years (2015 to 2018). The presence and DNA copy number of M. ovipneumoniae was determined using a newly developed species-specific qPCR. Breed (P<0.001), age (P<0.024), sampling time (P<0.001), and year (P<0.001) of collection affected log10 transformed M. ovipneumoniae DNA copy number, where Rambouillet had the lowest (P<0.0001) compared with both Polypay and Suffolk demonstrating a possible genetic component to detection. Samples from yearlings, April, and 2018 had the highest (P<0.046) detected DNA copy number mean. Sheep genomic DNA was genotyped with the Illumina OvineHD BeadChip. Principal component analysis identified most of the variation in the dataset was associated with breed. Therefore, genome wide association analysis was conducted with a mixed model (EMMAX), with principal components 1 to 6 as fixed and a kinship matrix as random effects. Genome-wide significant (P<9x10-8) SNPs were identified on chromosomes 6 and 7 in the all-breed analysis. Individual breed analysis had genome-wide significant (P<9x10-8) SNPs on chromosomes 3, 4, 7, 9, 10, 15, 17, and 22. Annotated genes near these SNPs are part of immune (ANAPC7, CUL5, TMEM229B, PTPN13), gene translation (PIWIL4), and chromatin organization (KDM2B) pathways. Immune genes are expected to have increased expression when leukocytes encounter M. ovipneumoniae which would lead to chromatin reorganization. Work is underway to narrow the range of these associated regions to identify the underlying causal mutations.


Asunto(s)
Mycoplasma ovipneumoniae/fisiología , Oveja Doméstica/genética , Oveja Doméstica/microbiología , Animales , Estudio de Asociación del Genoma Completo , Genotipo , Pulmón/microbiología , Ovinos , Oveja Doméstica/inmunología
11.
BMC Bioinformatics ; 22(1): 296, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078271

RESUMEN

BACKGROUND: Coxiella burnetii is the Gram-negative bacterium responsible for Q fever in humans and coxiellosis in domesticated agricultural animals. Previous vaccination efforts with whole cell inactivated bacteria or surface isolated proteins confer protection but can produce a reactogenic immune responses. Thereby a protective vaccine that does not cause aberrant immune reactions is required. The critical role of T-cell immunity in control of C. burnetii has been made clear, since either CD8+ or CD4+ T cells can empower clearance. The purpose of this study was to identify C. burnetii proteins bearing epitopes that interact with major histocompatibility complexes (MHC) from multiple host species (human, mouse, and cattle). RESULTS: Of the annotated 1815 proteins from the Nine Mile Phase I (RSA 493) assembly, 402 proteins were removed from analysis due to a lack of inter-isolate conservation. An additional 391 proteins were eliminated from assessment to avoid potential autoimmune responses due to the presence of host homology. We analyzed the remaining 1022 proteins for their ability to produce peptides that bind MHCI or MHCII. MHCI and MHCII predicted epitopes were filtered and compared between species yielding 777 MHCI epitopes and 453 MHCII epitopes. These epitopes were further examined for presentation by both MHCI and MHCII, and for proteins that contained multiple epitopes. There were 31 epitopes that overlapped positionally between MHCI and MHCII across host species. Of these, there were 9 epitopes represented within proteins containing ≥ 5 total epitopes, where an additional 24 proteins were also epitope dense. In all, 55 proteins were found to contain high scoring T-cell epitopes. Besides the well-studied protein Com1, most identified proteins were novel when compared to previously studied vaccine candidates. CONCLUSION: These data represent the first proteome-wide evaluation of C. burnetii peptide epitopes. Furthermore, the inclusion of human, mouse, and bovine data capture a range of hosts for this zoonotic pathogen plus an important model organism. This work provides new vaccine targets for future vaccination efforts and enhances opportunities for selecting multiple T-cell epitope types to include within a vaccine.


Asunto(s)
Coxiella burnetii , Animales , Antígenos Bacterianos , Vacunas Bacterianas , Bovinos , Epítopos de Linfocito T , Ratones , Proteoma
12.
Front Genet ; 12: 628849, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093640

RESUMEN

The Ovine Functional Annotation of Animal Genomes (FAANG) project, part of the broader livestock species FAANG initiative, aims to identify and characterize gene regulatory elements in domestic sheep. Regulatory element annotation is essential for identifying genetic variants that affect health and production traits in this important agricultural species, as greater than 90% of variants underlying genetic effects are estimated to lie outside of transcribed regions. Histone modifications that distinguish active or repressed chromatin states, CTCF binding, and DNA methylation were used to characterize regulatory elements in liver, spleen, and cerebellum tissues from four yearling sheep. Chromatin immunoprecipitation with sequencing (ChIP-seq) was performed for H3K4me3, H3K27ac, H3K4me1, H3K27me3, and CTCF. Nine chromatin states including active promoters, active enhancers, poised enhancers, repressed enhancers, and insulators were characterized in each tissue using ChromHMM. Whole-genome bisulfite sequencing (WGBS) was performed to determine the complement of whole-genome DNA methylation with the ChIP-seq data. Hypermethylated and hypomethylated regions were identified across tissues, and these locations were compared with chromatin states to better distinguish and validate regulatory elements in these tissues. Interestingly, chromatin states with the poised enhancer mark H3K4me1 in the spleen and cerebellum and CTCF in the liver displayed the greatest number of hypermethylated sites. Not surprisingly, active enhancers in the liver and spleen, and promoters in the cerebellum, displayed the greatest number of hypomethylated sites. Overall, chromatin states defined by histone marks and CTCF occupied approximately 22% of the genome in all three tissues. Furthermore, the liver and spleen displayed in common the greatest percent of active promoter (65%) and active enhancer (81%) states, and the liver and cerebellum displayed in common the greatest percent of poised enhancer (53%), repressed enhancer (68%), hypermethylated sites (75%), and hypomethylated sites (73%). In addition, both known and de novo CTCF-binding motifs were identified in all three tissues, with the highest number of unique motifs identified in the cerebellum. In summary, this study has identified the regulatory regions of genes in three tissues that play key roles in defining health and economically important traits and has set the precedent for the characterization of regulatory elements in ovine tissues using the Rambouillet reference genome.

13.
Front Vet Sci ; 8: 625323, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026885

RESUMEN

Bovine paratuberculosis, caused by Mycobacterium avium subspecies paratuberculosis (MAP), continues to impact the dairy industry through increased morbidity, mortality, and lost production. Although genome-wide association analyses (GWAAs) have identified loci associated with susceptibility to MAP, limited progress has been made in identifying mutations that cause disease susceptibility. A 235-kb region on Bos taurus chromosome 3 (BTA3), containing a 70-kb haplotype block surrounding endothelin 2 (EDN2), has previously been associated with the risk of MAP infection. EDN2 is highly expressed in the gut and is involved in intracellular calcium signaling and a wide array of biological processes. The objective of this study was to identify putative causal mutations for disease susceptibility in the region surrounding EDN2 in Holstein and Jersey cattle. Using sequence data from 10 Holstein and 10 Jersey cattle, common variants within the 70-kb region containing EDN2 were identified. A custom SNP genotyping array fine-mapped the region using 221 Holstein and 51 Jersey cattle and identified 17 putative causal variants (P < 0.01) located in the 5' region of EDN2 and a SNP in the 3' UTR (P = 0.00009) associated with MAP infection. MicroRNA interference assays, mRNA stability assays, and electrophoretic mobility shift assays were performed to determine if allelic changes at each SNP resulted in differences in EDN2 stability or expression. Two SNPs [rs109651404 (G/A) and rs110287192 (G/T)] located within the promoter region of EDN2 displayed differential binding affinity for transcription factors in binding sequences harboring the alternate SNP alleles. The luciferase reporter assay revealed that the transcriptional activity of the EDN2 promoter was increased (P < 0.05) with the A allele for rs109651404 and the G allele for rs110287192. These results suggest that the variants rs109651404 and rs110287192 are mutations that alter transcription and thus may alter susceptibility to MAP infection in Holstein and Jersey cattle.

14.
Genetics ; 217(3)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789347

RESUMEN

The gram-negative bacterium Coxiella burnetii is the causative agent of Query (Q) fever in humans and coxiellosis in livestock. Host genetics are associated with C. burnetii pathogenesis both in humans and animals; however, it remains unknown if specific genes are associated with severity of infection. We employed the Drosophila Genetics Reference Panel to perform a genome-wide association study to identify host genetic variants that affect host survival to C. burnetii infection. The genome-wide association study identified 64 unique variants (P < 10-5) associated with 25 candidate genes. We examined the role each candidate gene contributes to host survival during C. burnetii infection using flies carrying a null mutation or RNAi knockdown of each candidate. We validated 15 of the 25 candidate genes using at least one method. This is the first report establishing involvement of many of these genes or their homologs with C. burnetii susceptibility in any system. Among the validated genes, FER and tara play roles in the JAK/STAT, JNK, and decapentaplegic/TGF-ß signaling pathways which are components of known innate immune responses to C. burnetii infection. CG42673 and DIP-ε play roles in bacterial infection and synaptic signaling but have no previous association with C. burnetii pathogenesis. Furthermore, since the mammalian ortholog of CG13404 (PLGRKT) is an important regulator of macrophage function, CG13404 could play a role in host susceptibility to C. burnetii through hemocyte regulation. These insights provide a foundation for further investigation regarding the genetics of C. burnetii susceptibility across a wide variety of hosts.


Asunto(s)
Resistencia a la Enfermedad , Variación Genética , Fiebre Q/genética , Sitios de Carácter Cuantitativo , Animales , Proteínas de Ciclo Celular/genética , Coxiella burnetii/patogenicidad , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas del Ojo/genética , Antecedentes Genéticos , Fiebre Q/microbiología
15.
Vaccines (Basel) ; 9(2)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530566

RESUMEN

An efficacious vaccine for sheep-associated malignant catarrhal fever (SA-MCF) is important for the livestock industry. Research towards SA-MCF vaccine development is hindered by the absence of culture systems to propagate the causative agent, ovine herpesvirus-2 (OvHV-2), which means its genome cannot be experimentally modified to generate an attenuated vaccine strain. Alternative approaches for vaccine development are needed to deliver OvHV-2 antigens. Bovine herpesvirus 4 (BoHV-4) has been evaluated as a vaccine vector for several viral antigens with promising results. In this study, we genetically engineered BoHV-4 to express OvHV-2 glycoprotein B (gB) and evaluated its efficacy as an SA-MCF vaccine using a rabbit model. The construction of a viable recombinant virus (BoHV-4-AΔTK-OvHV-2-gB) and confirmation of OvHV-2 gB expression were performed in vitro. The immunization of rabbits with BoHV-4-AΔTK-OvHV-2-gB elicited strong humoral responses to OvHV-2 gB, including neutralizing antibodies. Following intra-nasal challenge with a lethal dose of OvHV-2, 42.9% of the OvHV-2 gB vaccinated rabbits were protected against SA-MCF, while all rabbits in the mock-vaccinated group succumbed to SA-MCF. Overall, OvHV-2 gB delivered by the recombinant BoHV-4 was immunogenic and partly protective against SA-MCF in rabbits. These are promising results towards an SA-MCF vaccine; however, improvements are needed to increase protection rates.

16.
Animals (Basel) ; 10(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333720

RESUMEN

Signature of selection studies have identified many genomic regions with known functional importance and some without verified functional roles. Multiple studies have identified Transmembrane protein 8B (TMEM8B)rs426272889 as having been recently under extreme selection pressure in domesticated sheep, but no study has provided sheep phenotypic data clarifying a reason for extreme selection. We tested rs426272889 for production trait association in 770 U.S. Rambouillet, Targhee, Polypay, and Suffolk sheep. TMEM8Brs426272889 was associated with mature weight at 3 and 4 years (p < 0.05). This suggested selection for sheep growth and body size might explain the historical extreme selection pressure in this genomic region. We also tested Sperm-associated antigen 8 (SPAG8) rs160159557 encoding a G493C substitution. While this variant was associated with mature weights at ages 3 and 4, it was not as strongly associated as TMEM8Brs426272889. Transmembrane protein 8B has little functional information except as an inhibitor of cancer cell proliferation. To our knowledge, this is the first study linking TMEM8B to whole organism growth and body size under standard conditions. Additional work will be necessary to identify the underlying functional variant(s). Once identified, such variants could be used to improve sheep production through selective breeding.

17.
Vet Immunol Immunopathol ; 230: 110125, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33137678

RESUMEN

Assessment of immune fitness is valuable in many aspects of livestock management and research. Determining immune consequences of selection for increased disease resistance or inhabiting various environments or climates can lead to different management decisions. The ability to measure immune responses due to different diets, pregnancy status, or aging will increase insight about how these factors contribute to overall immune health. The main objective of these experiments was to adapt a methodology used in cattle and pigs to measure both the humoral and cell-mediated immune response in sheep and goats. The route of administration of two antigens, Candida albicans and hen egg white lysozyme, were compared in sheep to determine differences in antibody or cell-mediated immune response. Subcutaneous injection produced a larger (P < 0.001) cell-mediated response compared to intramuscular injection. Inoculation in the axillary space produced a larger (P = 0.0031) antibody response compared to neck region. Finally, methodology was confirmed in goats. Complete blood cell counts were compared and lymphocytes were highest in low cell-mediated responders while eosinophils were highest in average antibody-mediated responders. This work provides a means to measure immune fitness in sheep and goats allowing for future experiments examining environmental or genetic effects on the immune response.


Asunto(s)
Formación de Anticuerpos , Cabras/inmunología , Inmunidad Celular , Inmunidad Humoral , Ovinos/inmunología , Animales , Bovinos , Enfermedades de los Bovinos/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Enfermedades de las Cabras/inmunología , Inmunoglobulina G/sangre , Ganado/inmunología , Distribución Aleatoria
18.
PLoS One ; 15(9): e0238631, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32881967

RESUMEN

Paratuberculosis (pTB), also known as Johne's disease (JD), is a contagious, chronic, and granulomatous inflammatory disease of the intestines of ruminants which is caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection, resulting in billions of dollars in economic losses worldwide. Since, currently, no effective cure is available for MAP infection, it is important to explore the genetic variants that affect the host MAP susceptibility. The aim of this study was to analyze a potential association between EDN2 synonymous gene mutations (rs110287192, rs109651404 and rs136707411), that modifies susceptibility to pTB. EDN2 rs110287192, rs109651404 and rs136707411 mutations were genotyped in 68 infected and 753 healthy animals from East Anatolian Red crossbred, Anatolian Black crossbred and Holstein breed cattle by using Custom TaqMan SNP Genotyping Assays. For pTB status, serum antibody levels S/P ≥ 1.0 were assessed in carriers of the different EDN2 genotypes. EDN2 rs110287192 mutation showed a significant association with bovine pTB (adj. p < 0.05). For rs110287192 locus, the odd ratios for GG and TG genotypes versus TT genotypes were 1.73; (95% CI = 0.34-8.59) and 0.53 (95% CI = 0.12-2.37) respectively, which indicated that proportion of TG heterozygotes were significantly higher in control animals as compared to pTB animals. On the other hand, while rs136707411 mutation showed a suggestive association with pTB status in the examined cattle population (nominal p < 0.05); no association was detected between rs109651404 genotypes and pTB status. Selecting animals against rs110287192-GG genotype may decrease the risk of pTB in cattle of the Bos taurus taurus subspecies.


Asunto(s)
Cruzamiento , Bovinos/genética , Bovinos/microbiología , Endotelinas/genética , Predisposición Genética a la Enfermedad , Paratuberculosis/genética , Polimorfismo de Nucleótido Simple/genética , Alelos , Animales , Modelos Logísticos , Paratuberculosis/microbiología
19.
Front Genet ; 11: 612031, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488675

RESUMEN

Alveolar macrophages function in innate and adaptive immunity, wound healing, and homeostasis in the lungs dependent on tissue-specific gene expression under epigenetic regulation. The functional diversity of tissue resident macrophages, despite their common myeloid lineage, highlights the need to study tissue-specific regulatory elements that control gene expression. Increasing evidence supports the hypothesis that subtle genetic changes alter sheep macrophage response to important production pathogens and zoonoses, for example, viruses like small ruminant lentiviruses and bacteria like Coxiella burnetii. Annotation of transcriptional regulatory elements will aid researchers in identifying genetic mutations of immunological consequence. Here we report the first genome-wide survey of regulatory elements in any sheep immune cell, utilizing alveolar macrophages. We assayed histone modifications and CTCF enrichment by chromatin immunoprecipitation with deep sequencing (ChIP-seq) in two sheep to determine cis-regulatory DNA elements and chromatin domain boundaries that control immunity-related gene expression. Histone modifications included H3K4me3 (denoting active promoters), H3K27ac (active enhancers), H3K4me1 (primed and distal enhancers), and H3K27me3 (broad silencers). In total, we identified 248,674 reproducible regulatory elements, which allowed assignment of putative biological function in macrophages to 12% of the sheep genome. Data exceeded the FAANG and ENCODE standards of 20 million and 45 million useable fragments for narrow and broad marks, respectively. Active elements showed consensus with RNA-seq data and were predictive of gene expression in alveolar macrophages from the publicly available Sheep Gene Expression Atlas. Silencer elements were not enriched for expressed genes, but rather for repressed developmental genes. CTCF enrichment enabled identification of 11,000 chromatin domains with mean size of 258 kb. To our knowledge, this is the first report to use immunoprecipitated CTCF to determine putative topological domains in sheep immune cells. Furthermore, these data will empower phenotype-associated mutation discovery since most causal variants are within regulatory elements.

20.
Front Genet ; 10: 1197, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921279

RESUMEN

Automated high-throughput phenotyping with sensors, imaging, and other on-farm technologies has resulted in a flood of data that are largely under-utilized. Drastic cost reductions in sequencing and other omics technology have also facilitated the ability for deep phenotyping of livestock at the molecular level. These advances have brought the animal sciences to a cross-roads in data science where increased training is needed to manage, record, and analyze data to generate knowledge and advances in Agriscience related disciplines. This paper describes the opportunities and challenges in using high-throughput phenotyping, "big data," analytics, and related technologies in the livestock industry based on discussions at the Livestock High-Throughput Phenotyping and Big Data Analytics meeting, held in November 2017 (see: https://www.animalgenome.org/bioinfo/community/workshops/2017/). Critical needs for investments in infrastructure for people (e.g., "big data" training), data (e.g., data transfer, management, and analytics), and technology (e.g., development of low cost sensors) were defined by this group. Though some subgroups of animal science have extensive experience in predictive modeling, cross-training in computer science, statistics, and related disciplines are needed to use big data for diverse applications in the field. Extensive opportunities exist for public and private entities to harness big data to develop valuable research knowledge and products to the benefit of society under the increased demands for food in a rapidly growing population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...